A dominant mutant of occludin disrupts tight junction structure and function.
نویسندگان
چکیده
The tight junction is the most apical intercellular junction of epithelial cells and forms a diffusion barrier between individual cells. Occludin is an integral membrane protein specifically associated with the tight junction which may contribute to the function or regulation of this intercellular seal. In order to elucidate the role of occludin at the tight junction, a full length and an N-terminally truncated murine occludin construct, both FLAG-tagged at the N terminus, were stably introduced into the murine epithelial cell line CSG 120/7. Both constructs were correctly targeted to the tight junction, as defined by colocalization with another tight junction protein, ZO-1. The construct lacking the N terminus and extracellular domains of occludin was found to exert a dramatic effect on tight junction integrity. Cell monolayers failed to develop an efficient permeability barrier, as demonstrated by low transcellular electrical resistance values and an increased paracellular flux to small molecular mass tracers. Furthermore, gaps were found to have been induced in the P-face associated tight junction strands, as visualized by freeze-fracture electron microscopy. These findings demonstrate an important role for the N-terminal half of occludin in tight junction assembly and maintaining the barrier function of the tight junction.
منابع مشابه
The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation
Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...
متن کاملActin Depolymerization Disrupts Tight Junctions via Caveolae-mediated Endocytosis□V
The tight junction (TJ) determines epithelial barrier function. Actin depolymerization disrupts TJ structure and barrier function, but the mechanisms of this effect remain poorly understood. The goal of this study was to define these mechanisms. Madin-Darby canine kidney (MDCK) cells expressing enhanced green fluorescent protein-, enhanced yellow fluorescent protein-, or monomeric red fluoresce...
متن کاملLipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier functio...
متن کاملCOOH Terminus of Occludin Is Required for Tight Junction Barrier Function in Early Xenopus Embryos
Occludin is the only known integral membrane protein localized at the points of membrane- membrane interaction of the tight junction. We have used the Xenopus embryo as an assay system to examine: (a) whether the expression of mutant occludin in embryos will disrupt the barrier function of tight junctions, and (b) whether there are signals within the occludin structure that are required for tar...
متن کاملActin depolymerization disrupts tight junctions via caveolae-mediated endocytosis.
The tight junction (TJ) determines epithelial barrier function. Actin depolymerization disrupts TJ structure and barrier function, but the mechanisms of this effect remain poorly understood. The goal of this study was to define these mechanisms. Madin-Darby canine kidney (MDCK) cells expressing enhanced green fluorescent protein-, enhanced yellow fluorescent protein-, or monomeric red fluoresce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 12) شماره
صفحات -
تاریخ انتشار 1999